# بررسى اثر محل تماس اكلوزالى روى شكستن چینى در روكش چیينى <br> فلز با فلزات Base <br> دكتر مهلديه سيفى <br> استاديار گَروه پروتز دانشكده دندانپزشكى، دانشگاه علوم پزشكى مشهد <br> دكتر محمدارضا صابونى <br> استاديار گَروه پروتز دانشكده دندانپزشكى، دانشگاه علوم پزشكى مشهد دكتر رضا كوهريان <br> دانشيار گروه پروتز دانشكده دندانپزشكى، دانشگاه علوم پزشكى مشهد 

## مقدمه

ترميمهاى چينى - فلز با آليازهاى بيس متال از رايج ترين ترميمهاى دندانیزشكى است و تاكنون تحقيقى در رابطه با محل ختم چينى در سطح اكلوزال اين ترميمها انجام نشده است. هدف اصلى اين طرح يافتن مناسبترين محل اتصال چیينى- فلز در سطح اكلوزال، در رابطه با محل تماس اكلوزالى، در ترميمهاى چينى فلز با آلياز Base Metal مى باشد. مواد و روشها

Vه مدل فلزى تهيه و بر روى هر كدام يك روكش چينى- فلز ساخته شد. روكشها ، روى مدلهاى مربوطه با سمان زينگ


گرديد:
گروه اول (A) ، در محل اتصال چينى فلز گروه دوم (B) ، 「


يافته ها
پس از ثبت نيروى لازم براى شكست چينى در هر نمونه ، تحليل آمارى با استفاده از آناليز واريانس يك عاملى (ANOVA) و تست دانكن انجام شد.
 بيشترين نيرو يعنى در حدود VI 1 Fkg

نتيجه كيرى
ا - در ترميمهاى چينى فلز بهترين محل براى تماس اكلوزالى فلز مى باشد. ץ- خطر شكست چیينى در ترميمهاى چینی فلز، هنگامى كه تماس اكلوزالى روى چینى قرار دارد بيشتر از زمانى است كه تماس در محل اتصال چپينى فلز مى باشد.

كليد وازه ها
محل اتصال چينى، فلز، تماس اكلوزالى، آليازهاى بيس متال.


Comparison of the effect of different locations of occlusal contact on the porcelain fracture in base metal-ceramic crown
Sayfi M.*
Assistant Professor of Prosthodontics Dept, Dental School, Mashhad University of Medical Sciences,Mashhad,Iran

Sabooni MR.
Assistant Professor of Prosthodontics Dep, Dental School, Mashhad University of Medical Sciences,Mashhad,Iran

Goharian R.
Associate Professor of Prosthodontics Dept, Dental School, Mashhad University of Medical Sciences,Mashhad,Iran


#### Abstract

Introduction The base metal ceramic restorations are one of the most popular restorations in the world. No research has been done about the porcelain metal junction on the occlusal surface yet. The main purpose of this study was to find the best location for porcelain metal junction with regard to occlusal contact in base metal- ceramic crown.

\section*{Materials \&Methods}

75 Porcelain Fused to Metal (P.F.M) crowns were made for metal dies. Crowns were cemented on the respective die with zinc phosphate cement and were divided into three groups of 25 samples. Occlusal contact in each group was as follows: First group (A): On the porcelain metal junction. Second group (B): 2 mm away from the porcelain metal junction on the porcelain. Third group (C): 2 mm away from the porcelain metal junction on the metal. All of the samples were prepared for compressive force with Instron machine. Data were analyzed with one way ANOVA and Duncan tests. Results: 1) The average force was different in each of the 3 groups significantly. 2) Group B had the lowest amount of force ( 290 kgF ) and group C had the greatest amount $(713 \mathrm{kgF})$. 3) Group A developed a force between $B \& C(529 \mathrm{kgF})$.

\section*{Conclusions}

1- The best location for occlusal contact in the porcelain metal junction restorations is on the metal. 2- When the occlusal contact is on the porcelain metal junction, It needs more force for porcelain fracture than when it is on the porcelain.


Key words: Porcelain metal junction, occlusal contact, base metal alloy.

[^0]كه تماس اكلوزالى بهتر است روى فلز باشد و در صورتى كه اهكان برقرارى تماس روى فلز نيست بهتر است تماس روى
 اتصال چينى- فلز در سطح اكلوزال در رابطه با محل تماس


مواد و روش

پس از انجام مطالعه مقدماتى اطلاعات در اختيار آمارگر



 Vo براى ترميم چينى فلز تراش دآ

 الگوى مومى در سطح اكلوزال در قسمتهاى تمام فلز الز





 كردن و نشاندن اسكلتهاى فلزى روى مدلهاى باكالى براى گذاشتن چينى با مولت و سندبلاست آلا سطح اكلوزال بصورت صاف فرم داده شد تا در وارد كردن نيرو مشكلى نداشته باشيم. مراحل مختلف چينى گذارى به ترتيب شامل إيك گذارى در

 بودند اصلار و دوباره چينى گذار

 تست فشار توسط دستگاه اينسترون ( Nene.USA ) انجام

## مقدمه

در ترميمهاى متال سراميك بعلت اثر سايند گى چجينى بهتر است كه تماس اكلوزالى روى فلز باشد. بهمين دليل معمولاً


 نيست تماس بر روى چیينى قرار مى گـى گيرد.
 سطح لينگوال ترميمهاى قدامى بالا ، محل اتصال اتصال چينى - فلز

 نتوانيم بطور صحيحى تماس اكلوزالى را روى فلز قرار دهيم ، بايد محل اتصال حينى فلز را بيشتر به سمت جينجيو اكيوال انتقال
دهيم تا تماس اكلوزالى روى چينى واقع شود (r) .

بر طبق نظريه مكك ليكن هيحگاه نبايد تماس كاسهـاى
 قرار گيرد. او معتقد است كه چينى در محل اتصال بال به فلز بيشتر
 كه تماسهاى اكلوزالى در ترميمهاى جينى فلز بالي بايد روى فلز
 نزديكتر نشوند.
در مطالعه Joseph A.woods با استغاده از نيروى فشارى فزاينده در محلل اتصال حينى - فلز به اين نتيجه رسيد كه ئه نيروى
 چینیى است. در اين مطالهه علت شكستهاى كلينيكى چينى رال



 قرار گيرد تا توزيع استرس مطلوب باشد ${ }^{\text {تا }}$. غير از مطالهه Joseph A.woods ، ساير محققين تماس در ناحيه اتصال چينى فلز را مجاز نميدانند و اكثراً توصيه مى كند

سطح 0\％بين متوسط نيرو در سه گروه اختلاف معنى دار وجود
 در سطح 0٪ متوسط نيرو در هر گروه با گروه ديگر اختلاف معنى دار داشته بطورى كه در گروه B كمترين نيرو（Yq．Kg）و
 مقايسه متوسط نيرو به تفكيك سه روش نشان داده شده است تست دانكن هم براى مقايسه هر گروه با گروه ديگر انجام شد（جلـول


نمودار（1）：مقايسه متوسط نيرو به تفكيك سه روش

گرديد．براى انجام تست فشار يكك ميله فلزى با نو كك مخروطى به قطر r ميليمتر كه از نظر اندازه و شكل مشا مشابه كاسپهاى فانكشنال بود ساخته شد．نو كك مخروطى ميله در گروه A محل اتصال چینى－فلز قرار گرفت．در گروه B تماس ميله دور تر از محل اتصال چینى فلز و روى چیینى و در گروه تماس Y C قرار گرفت． پس از تعيين محل تماس اكلوزالى در هر گروه، نوك ميله فلزى دستگاه در محل مشخص شده قرار گرفت و دستگاه فعال گرديد．افزايش فشار تا هنگام تر كك يا شكست چینى ادامه داشت．به محض افت فشار، نيروى لازم براى شكست چینى ثبت و همزمان منحنى مربوطه توسط دستگاه ترسيم گرديد． يافته ها
پس از ثبت نيروى لازم براى شكست چینى در گروههاى مختلف تحليل آمارى داده ها انجام گرفت．اطلاعات آم آمارى مربوط به سه گروه در جدول 1 مشخص شده است ．با استفاده از آناليز واريانس يك عاملى و تست دانكن تحليل آمارى انجام شد．در

جدول 1：اطلاعات آمارى مربوط به سه گروه A，B，C

| گروهها | تعداد | ميانگين | انحراف <br> استاندارد | خطاى <br> استاندارد | فاصله اطمينان 90\％ |  | مينيمّم | ماكزيمبم |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | پائين ترين حد | بالاترين حد |  |  |
| $\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { كل } \end{aligned}$ | ro | ora／aqr． | lle／AVrr | YY／9VE7 | £イY／OVEV | OVV／E．9T | rool． | V1．／7． |
|  | ro | rq．／Er¢． | NY／7aro | 17／orno | rot／ra．r | rys／oove | $1 \mathrm{Vr} / \ldots$ | OrA／r． |
|  | ro | V1r／res． | Irv／oorr | Y0／01．7 | 77．／79Y7 | V70／990E | $\varepsilon \cdot r / q$. | 1．7Y／．． |
|  | vo | 00／rorr | r．0／ヶモ17 | Y／VN1－N | £ $¢$／•・ヘ0 | 00N／E9N1 | $1 \mathrm{~V} / \mathrm{T} \cdot$ ． | 1．7Y／．． |

جدول † ：آزمون دانكن براى مقايسه دو به دو، سه گروه

| گروهها | تعداد | ג＝• |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | r | $r$ |
| B | Yo | rq．／ぇrを． | － | － |
| A | ro | － | ora／aqr． | － |
| C | ro | － | － | VIr／ヶとを． |
| سطح معنى دارى | － | 1／$\cdot$ | 1／．． | 1／．． |

مححل اتصال جينى فلز حدوداً •rا كيلو گرم ميباشد در صورتى كه در اين مطالعه عدد .



 اختلاف در آلياءٌ مورد استفاده است . در عين حال نيروهاى الي ثبت شده در اين مطالعه از نيروى بايت معمول خيلى بيشتر






نخواهد داشت .

## نتيجه گيرى

1 اكلوزالى روى فلز باشد. r r
r -


 لابراتوارى در هنگام آماده سازى اسكلت فلزى آلي حتماً بها به دستورات كارخانه سازنده آليازً دقت شود.

تشكر و قدردانى

 اين طرح را متقبل شده اند

طبق تحقيقات انجام شده نيروى بايت در افراد مختلف متغاوت است. نيروى بايت در مردان بيش از زنان ميباشد و وري اعداد متفاوتى براى نيروى بايت ذكر شده است است ـ نيروى باري بايت
 V9 - 99


 بيشترين نيروى بايت معمول در مردان حدود



 بنابراين به احتمال زياد شكستهاى چاينى

 سازى سطح اسكلت فلزى براى باند با چينى است .

 بعضى از تستها استحكام باند اين آليازها را را معادل و و يا حتى الياري






 آقاى .Joseph A. Woods

 مطالعه آقاى Woods نيروى هاى لازم براى شكست چينى در

## منابع

1. Craig RO, EL-Ebrashi MK, Peyton FA. Stress Distribution in Porcelain Fused to Gold Crown and Preparations constructed with Photoelasite Plastics. J Dent Res 1971; 50: 1278-83.
2. Shillingburg JR. Fundamentals of Fixed Prosthodontics. $3^{\text {rd }}$ ed. Chicago: Quintessence publishing co; 1997. p. 485.
3. Mclean JW. The Science and Art of Dental Ceramics, vol II: Bridge Design and Laboratory Procedures in Dental Ceramics $1^{\text {st }}$ ed. Chicago: Quintessence publishing co; 1980, P: 192.
4. Woods JA, Cavazose E D. Effect of PorcelainMetal junction Angulation on porcelain Fracture. J Prosthet Dent 1985; 54: 501-503.
5. Craig RO, EL-Ebrashi MK, Farah JW. Stress

Distribution in Photoelastic Models of Transverse Sections of Porcelain Fused to Gold Crowns and Preparations. J Dent Res 1973; 52: 1060-64.
6. Okeson P. Management of Temporo Mandibular Disorders and Occlusion, $2^{\text {nd }}$ ed. St. Louis; Mosby Co; 1996. P. 52.
7. Gibbs CH, et al, Limits of Human Bite Strength. J Prosthet Dent 1986; 56: 226.
8. Phillips RW: Skinner's Science of Dental Materials, $9^{\text {th }}$ ed. Philadelphia: WB Saunders CO; 1991. P. 375.
9. Lubovich RP, Good kind RJ. Bond Strength Studies of Precious, Semi precious and non Precious Ceramic - Metal Alloys with two Porcelain J Prosthet Dent 1977; 37: 288.


[^0]:    * Corresponding Author

